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On the Normal Convergence of a Class
of Simple Batch Epidemics

by

Naftali A. Langberg

ABSTRACT

A group of n susceptible individuals exposed to a contagious
disease is considered. It is assumed that at each instant in
time one or more susceptible individuals can contract the disease.

The progress of this epidemic is modeled by a stochastic
process Xn(t), t in [0, «) representing the number of infective
individuals at time t. It is shown that Xn(t), with the suitable
standardization and under a mild condition, converges in distribution

as n + ® to a normal random variable for all t in (O, to), vwhere

to is an identifiable number.

Key words: Simple batch epidemics, weak convergence, convergence
in distribution, normal distributions, Brownian motion, and the

Berry-Esseen bound.
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1. Introduction and Summary.

We consider a population of susceptible individuals (susceptibles) exposed
to contagious disease (disease). We say that the population of susceptibles

undergoes a simple epidemic if the following three assumptions hold. [Bailey

(1975)].
(1.1) Once a susceptible contracts the disease he remains contagious
during the duration of the epidemic.
(1.2) Individuals neither join nor do they depart from the population, and
(1.3) At each point in time at most one susceptible contracts the disease.
It is quite conceivable that when an infective individual (infective)
interacts with a group of susceptibles one or more of them contract the disease.
In the paper we consider such a situvation. We say that a population of suscepti-

bles, exposed to a disease, undergoes a simple batch epidemic if Assumptions

(1.1) and (1.2) hold and if the following holds:

(1.4) At each point in time one or more susceptibles can contract the
disease.

Let denote by TO the time the first group of susceptibles contracts

the disease, and let n be the number of susceptibles at TO. We describe the
progress of the simple batch epidemic among the susceptibles by a stochastic
process Xn(t), t in {0, ©) representing the number of infectives at time

t measured from To. In Section 2 we construct a variety of stochastic processes
that model the progress of simple batch epidemics. However, in the sequel

we restrict our analysis to a special class of simple batch epidemics. The
stochastic processes corresponding to this class of simple batch epidemics

are presented in the last paragraph of Section 2. Thisclass of simple batch

epidemics generalizes models used and motivated by Severo (1969) to describe

simple epidemic situations.

g
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Billard, Lacayo and Langberg (1980) consider a different class of simple
batch epidemics. They prove, for this ciass, that the number of infectives
at time t: Xn(t), t in {0, =) converges in distribution as n + » to an identifi-
able discrete random variable (rv) for all t in [0, »). In Section 4 we consider
the class of simlple batch epidemics defined in the last paragraph of Section 2.
We assume that

(1.5) %}m(n_lxn(o) - A)/n = A, where A is in [0, ) and A is in (-=, =),
and prove that Xn(t), with the suitable standartization, converges in distribu-
tion as n + » to a normal rv for all t in (O, to) and identify to.
In Section 3 we present some key lemmas used later in the proof of our

main result given in Section 4. Throughout we define a sum over an empty

set of indiciesas zero, and denote by L(n), n =1, 2, ..., a sequence of

integers assuming for almost all n values in the set {1, ..., n} respectively.
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2. DModel Construction

In this section we construct stochastic processes that describe the

fFrogress of simple batch epidemics among the susceptibles. We need some notation.,

Let Zl’ Zl’ +++sy be a sequence of i.i.d rv's assuming values in the

set {1, 2, ...}, let EZ £ = m, and let Var Z 02. Let D, = Zk Z , and let

1 1 = _k q=1"q
1(k) = min{q: Dq >k, q =0, ...y k} for all k in {0, 1, ...}. Further, let

UI’UZ’ «ee, bean i.i.d sequence of nonnegative rv's independent of the sequence

Zl, 22, seey let EUI =1, let Var U1 = gz, and let us assume that EUi < w»,

k=1, ..., 1(n) be the kth interinfection time defined

Finally, let Tn K’

as the time that elapses between the (k - I)EE and the ksh change in the

number of infectives, let S T(k)T s k=0, «o.y, n, let S = ®,

n,k = q=1 'n,q n,n+l
ard let p(un, q), q = Xn(O), .ess xn(o) + 0 -1, be positive real numbers.

We are ready now to construct the desired stochastic processes. Let

k = 0,...,n and Jet t be in [0, «). Then the following event equality holds.

(2.1) (x (t) - X (0) =k) =(5 | <t <S

,k n,k+1)'

Thus, for all Tis eees by ‘n (0, ») and all e in {1, 2, ...} the distribution
function of the random vector {xn(tl), ey Xn(te)} is determined by Equation
(2.1). Consequently, to construct the process Xn(t), t in [0, =) it suffices

to determine the distribution function of the random vector {T(mn), Tn,l’ vess
Tn,t(n)}' To determine the distribution function of this random vector it

is enough to present the distribution function of the conditional random

—~—
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vector {Tn,l’ Tn,r(n)}'T(n)' We assume throughout that

(2.2) the two conditional random vectors {T eeey, T (n) and

n,-r(n)”T

{u(n,)g5o))uf uln, Xn(O) + DI)UZ’ veey uln, Xn(O) + Dt(n)-l)ur(n)}lT(n)

n,1’

are equal in distribution for n =1, 2, ... .

Let U1 be an exponential random variable. Then the differential equations
associated with the corresponding simple batch epidemics have a relative
simple form. Although these differential equations are not used in the paper

we present them for the sake of completeness.

Proposition 2.1. Let Pn,q(t) = P{Xn(t) - Xn(O) =q}, 9 =0, «es, N,

t in [0, »). Let us assume that U, is an exponential rv. Then for all t in [0, =)

1
[ n,b )P (2) k=0
K ’n’"n,o
dp_  (t) 1 k=1
B TY. R B - e
(2.3) dt = 1-u (n,bn+k)Pn,k(t)+q£ou (n,bn+q)Pn’q(t)P{Z1 k-q}  0<k<n
n-1 -1
L [ W (n,b vq)P  (£)P(Z,2n-q} k=n.
q=0

Finally, we present the class of stochastic process corresponding to
the simple batch epidemics that are the subject of our analysis. Let

u(n, q), q = Xn(O), vees Xn(O) +n -1, be positive real numbers given by:

(2.4) u(n, q) = Aq_a(n + Xn(O) ~ q)-anu+8—1.

We assume thatA,gerein (0,®) and that the range of B dapends on the value .
of A in Condition (1.5) as follows: for A > OB 1g 45 (0,») and for A = 08 1s in
(0, 1/3). In the sequel we adress ourselves to simple batch epidemics defined

by Equations (2.1), (2.2) and (2.4).
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3. Preliminaries.
-1
m oz 8a
Let f(z, a) = f (1-mp)-°a(x + mp) dp for z in [0, 1) and for a in
0

y~Ra

a(a+8-1)¢t(L{n))
n )
q=1

[0, =), let J(L(n), a) = (n -p__ )X _(0) + D__

q-1 q-1

n=1, 2, ..., a in {0, =), and let Ix be the largest integer less than
. _ -4

or equal to y, y in (~», @), Further, let wn(p) = (D[np] - mpn)n *,

n=1,2, ..., pin [0, 1], let denote by W(p), p in [0, 1] a_normalized

Brownian motion {Breiman (1968), p. 257], and let I denote the indicator

function. Throughout we assume that
(3.1) %}g(n_lL(n) - z)/n = v, where z is in (0, 1) and v is in (=, ®),

In this section we present three key lemmas. We need these lemmas in

the next section in order to obtain our main result. First, we show that

the process wL(n) 1(p) = (n11(L(n)) —zm‘l)/; + cwn(p), n=1, 2, ..., p in [D, 1]
3

converges weakly as n + » to the process W (p) = My - oW(m lz)} 4 oW(p),

a-1

p in [0, 1]. Next, we show that n J(L(n),a) converges in probability as

n+ o to f(z, a). Finally, we show that {J(L(n), 1) - £(z, 1)}n converges

in distribution as n » = to m 1{v - ow(zm—l)}(l -2)%0 .+ z)_B

-1
zm

- BAI(Xx > 0)f(z, 1) + of W(p)(1 - mp)_a(A + mp)—B{a(l - mp)“1 - B(» + mp)—l}dp.
c .

Without loss of generality we can assume that
(3.2) the process W(p) has continuous sample paths [Breiman (1968), p. 259],
and that

(3.3) the rv Sup |wn(p) - oW(p)| converges in probability as n + = to zero.
0<p<1”..

(Brieman (1968), p. 280)

We are ready now to establish the weak convergence of the process W

L(n),l(p)'

.
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lemi.z 3.1. Let us assume that Condition (3.1) holds. Then wL(n),l(p)
converges weakly as n + « to wl(p).
Proof. By Statement (3.2) the process Wl(p) has continuous sample

paths. Further for all 0 2P 2Pl <1

2 2
E(WL(n) ’l(P) e wL(n) ,l(Pl)) (wL(n) ’1(92) - WL(n) ’l(P )) =

2 2 2 2
E(Wn(P) - Wn(pl)) (Wn(Pz) - Wn(P)) < 4¢ (PZ - Pl)
[Billingsley (1968), p. 138, (16.4)] Thus, to prove the result of the
lemma it suffices to show that:
(3.4) the random vector {wL(n),l(pl)’ ey wL(n),l(pe)} converges in
digtribution as n + » to the random vector {wl(pl), ey wl(pe)} for all

Pys ++es Py in [0, 1] and for all e in {1, 2, ...} [Billingsley (1968), p. 128]

Next, to prove Statement (3.4) it is enough to show that:

(3.5) the random vector {(n-lt(L(n)) - m-lz)/g; wn(pl), ceey Wn(pe)}

converges in distribution as n + * to the random vector

{m-l(v - Ow(zm-l)), ow(pl), ceny GW(pe)} for all Pys +es P in {0, 1]

and all e in {1, 2, ...} by the Carmer-Wald device [Billingsley (1968), p. 491.
Finally, we prove Statement (3.5). Let x, Xys oces X be in (-», =),

X

let Pys +++s Py be in [0, 1], and let H = [xn™ + zm.ln]. We note that
P{(n_lr(L(n)) - m.lz)fg'j_x, Wn(pr) 2x,r= 1, .., el =

= P{DH‘Z L(n), wn(pr)-i X, r= 1, ..., e}, and that by Condition
3.1) %;g(L(n) - mH)n-& = v - mx. Since,

%5 - mi - -
%15 Var{n (DB wH - D 4+ nz)} = 0 we conclude that

(ozm 11

%;g P{(n-lt(L(n)) - m-lz)ﬁi_g X, Wn(pr)_: X, r= 1, ..., e} =

T P{Wn(an'l)_z v-omx, W) <x,r=1,..., e}
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Consequently Statement (3.5) folleows by Statement (3.3) and a well known
result {Billingsley (1968), p.25, Th. &.1.]. ||
In gparticular we obtain from Lemma 3.1

Corollary 3.2. Let us assume that Condition (3.1) holds. Then

1y

(a) (n_lr(L(n)) - m_lz)/; converges in distribution as n + « to m-l{v - oW(zm
and (b) n_lr(L(n)) converges in probability as n + = to m-lz.

For the sake of completeness we note that n_lr(L(n)) converges with probability
lasne+otom 'z provided lim n_lL(n) =z in (0, 1].

Now, we establish the convergence of na-lJ(L(n), a) to f(z, a) . We

need some notation and one simple result. Let In(p) = I(p < n-lt(L(n))),

-
and let Vn(p) =n ‘wn(p), n=1,2, ..., p in [0, 1]. Since, J(L(n), a) =

t(L(n))
na(a+8—1)/

! (n - D[x])'°a(xn(o) + D[x])_aadx we obtain by the substitution

x = np that

(3.6) 02 l3(L(n), a) =

-1
t(L(n))
(1= mp = V()™ (a7IX_(0) + mp + V_()) 2dp.

H
O~

We are ready now to establish the convergence of na—lJ(L(n), a).
Lemma 3.3. Let us assume that Conditions (1.5) and (3.1) hold. Then
na—lJ(L(n), a) converges in probability as n + = to £f(z, a)for all a in [0, 3].

Proof. First we note that for all p in (O, n-lt(L(n)))and almost all

n in {1, 2, ...}
(3.7 222-p21-nup - Vn(p) >(1 -2)/2, and

(3.8) 2(x + 2) 2 n'lxn(o) + mp + Vn(p) > /2 + p.

S

b Y




By Statement (3.3 Vn(p) converges in probability as n + « to zero for all

v in [C, 1]. ¥y Corollary 3.2 (b) In(p) converges with probability 1 as

n-+eecto I(p < m_lz) on [0, 1] - {m—lz}. Further, for almost all n J(L(n), a) =

1

= fIn(p)(I - mp - vn(p))’“(n'lxn(o) + P + Vn(p))-adp. Consequently the result
0

of the lemmas follows by the dominated convergence theorem [Lo&ve (1963), ;
. 125]. ||
We note that Lemma 3.3 remains valid if Condition (3.1) is replaced by the

.. , . -1 .
weaker condition that %}g n L(n) =z in (0, 1).

From Inequalities (3.7) and (3.8) we conclude that for almost all n in

( 19 2) o--}
-1
n t(L(n)) .

(3.9) 0 ¥ liLn), a) < (1 - 2)T%%2%% (A /2 +p) %%dp, and thar
0

(3.10) n® laLiny, a) > 2730 B Ly,

We use the last two inequalities in Section &4,

Finally we establish the convergence in distribution of {J(L(n), 1)
- £(z, 1)}/ as n > =,

Lemma 3.4. Let us assume that Conditions (1.5) and (3.1) kold. Then
{J(L(n), 1) - £(z, 1)}/n converges in distribution as n * = to

m-l{v - ow(m—lz)}(l - z)-a(A + z)-8 - BAI(X > 0)f(z, 1) +

+

-1,
o? Wip)(1 - mp)-a(k + mp)_e{a(l - mp)-1 - B(h + mp)_l}dp.
0
-1
n “t(L(n))
(z) =/ (1 - mp)—o(n_lxn(o) + mp)_de
]

1
z

Proof. Let RL(n),l

-1
z

[}
O3

-
(1 - mp)—u(n—lxn(O) + mp)-de, let Rn,Z(z) = é

-1 -1
r oz a 8 n “t(L(n)) -
(/) (1 - mp)” (A + mp) dr, and-let l&‘(wsa):(f) 3 (l-mp-Vn(p)

(1-mp) (a7 x_(0) + mp)™*

A

_ e .




-1
- - n “1t(L(n)) o - -
@™ (0) +mp + V_(p)) Pdp - | (1 - o) "*(ax_(0) + up) Pap,
0
m=1l, 2, ..., 2 in (0, 1)

We note that
(3.1 (L@, D - £z, 1) = Ry (2) + R ()% Ry ()

Further, let en(p) be a point in the interval generated by O and Vn(p),
n=1,2, ..., p in [0, 1. Finally, let N e Yy be points in the inter-
vals generated by n-lr(L(n)), m-lz and by 0 and n-lxn(O) - ) respectively,
n=1, 2, ... .

By the mean value theorem we conclude that

(3.12) Ry, 4(2) = @ liwm) -ulaa - mnn)"“(n-lxn(o) + mr\n)-B.

-1 n 'z -a -8-1

(3.13) R ,(z) = -B(n "X (0) - N[ Q- mp) (v, +mp) ™" “dp, and that
’ 0

n~lt(L(n)) o -1 8
(3.14) Mg@'é (1 -mp -6 (p)) (n X (0) +mp +0.(p))

{a(l - mp - o ()™ - BTIK (0) +mp + 6, () ap.

To prove the result of the lemma it suffices to show that
(1) ’EhL(n) | converges in distribution to m-l{v - aw(m-lz)}, that
?

(11) /oR

a2 Comverges to -BAI(A > 0)f(z, 1) and that
»

m
((111) ﬂi.@ 3convergea'in probability to of W(p)(1 - wp) " *(A + mp) g
, R

(1}
{a@l - mp)”! - (A + mp) L}dp.

First, we note that (i) follows by Condition 3.1, by Corollary

3.2 and by Statement (3.12).
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Next, we verify (ii). For all p in (O, m-lz)
(1 - mp) %A + mp + vn)”s <(1-2)7%\ +mp + vn)'B. Thus, by Vitalis
theorem [Loéve (1963), p. 1627 and Condition (1.5) (i1) holds for A > 0.

Let us assume that A = 0. Then
-1 -1

-1 Tz -a -8 o =1 o -8 !
0<n X (M) (-ump) *mp+v) dp<(l-2)n X(@f (m+v) dp.
- n Y n - n g n
|
Thus, (1i) follows ior the case A = 0 by a simple limit argument. y

~

Finally, we verify (ii1i). By considering the cases Vn(p) > 0 and

Vn(p) < 0 one can show that for all p in (0O, n-lT(L(n)» and almost all
n in {1, 2, ...}

l1-mp2>1-mp- On(p) > min{l - mp, (1 - z)/2}, and that

4) + 2z4np > n-lxn(O) + mp + On(p) > (m + 1)p.

1
-0
Further for almost all n RL(n),S éln(p)(l - mp - en(p))
-1 -8 -1 -1 ‘l}

(n Xn(O) + mp + Gn(p)) {a(l - mp + Gn(p)) - B(n Xn(O) + mp + Gn(p)) dp.

Thus, by Vitalis theorem, by Statement (3.3), and by the convergence

with probability 1 of In(p) (111) follows. ||




il

4. HMain Result,

Let to = Af(1,1), let g(t), t in (O, to) be the inverse function of

Af(z,1), and let h(p) = (L - mp) (A + wp) Bla(d - mp)™L - B(A + mp) 7L},

p in (0, 1). Further, let Q(t), t in (O, to) be a normal rv such that

2.2

EQ(t) = A{1l - BmI(A > 0)£(g(t),1)} and that Var Q(t) = m“§° £(g(t),2) +

+ % gy @ - g(e))72 (1 + g(e)) % -

-1 -1 )
~20%n - g™ A +geNE ™ 8O noydp + 20%% [ B [ yhu)n(p) du dp.
[o] o o]

“inally, let ¢ be the distribution function of a standard normal rv, and let
BLM) ) = A% - 3,03 Y 2@Wm),2), n =1, 2, ..., x in (-=,%).

In this section we present our main result. We prove that
(n-lxn(t) - g(t) - A)vn converges in distribution as n + = to the normal rv Q(t)
for all t in (O, to) provided Condition (1.5) holds. We need the following lemma.

Lemma 4.l.- Let us assume that Condition (1.5) holds. Then

(4.1) £im  Sup |P{S
e —m<x<o

a,L(y ¥} - EH{BA@),0)}] = 0.

Proof. Let 0 < ¢ < min{m-lz,m-l(l - 2z)}, and let L 2(e) =
I(In-lr(L(n)) - m-lz|se), n=1, 2, ... .
We note that for all x in (~»,®)
IE(I(SD,L(R)SX) "‘ ¢{B(L(n) ’x)})(l - I‘.’};Z(E))ls
< 2P{|n'1r(L(n)) - m'lzlz&}.

Thus, to prove Statement (4.1) it suffices by Corollary 3.2(b) to show that

4.2) £4m  Sup IE(I(Sn.L(n)Sx) - ¢{B(L(n),x)})ln’2(¢)| = 0,

e <Yy <0

We proceed to prove Statement (4.2). Let U be the o-field generated by

IB, sesey T

]
zl’ zz, «es o Then the conditional rv's '1‘n n,t(n

|B are independent.
)1 )

e R
RS NI g
- g = g ey e N --




12

Thus, by the Berry-Esseen bound {Lotve (1963), p. 283] we obtain that

S P{s <x|B} -~ ¢{B(L(n),x)}| <
_wl:i“l a,L (o) <% n I

<o/ ZCG-3E|U1-1 | 3 (nZJ(L(n) »3)(nJ (L (n) ,2)')'3’ 2 , where
C 1s a positive constant.

Thus, to prove Statement (4.,2) it is enough to show that

(4.3) 2m Y255 w(m),3)) MIL@),27%1 (o) = 0.
oo n,2

Finally, we prove Statement (4.3). By Inequalities (3.9) and (3.10) we
conclude that for almost all = in {1, 2, ...}

3/2

23 L@, MaIW ), NP1 () s

. -1
< (l_z)—3a20(!+38(x + z) 3B(m-lz - £)3/2 Im z+£ (A/Zﬁ'p)-aﬂdp.
(]

Consequently Statement (4.3) follows. ll
We note that Lemma 4.1 remains valid if Condition (3.1) 1s replaced by the

weaker condition that £im n_lL(n) = z in (0, 1).
nre

We are ready now to show that (n-lxn(t)~g(t)—X)%Tconvetges in distribution
as n + = to Q(t) for all t in (O, to).

Theorem 4.2. Let us assume that Condition (1.5) holds, Then
{n'lx“(:) - g(t) - A}/n converges in distribution as n + = to Q(t) for all
t 10 (0, to).

Proof. First, we note that n-lxn(t) -g(t) - A =
{n-l(xn(t) - X (0) - g(t)} + {n'lxn(o) - A}. Thus, to prove the result of
the theorem it suffices by Condition (1.5) to show that
{n-l(xn(t)-xn(O)) - g(t)}/n converges in distribution as n + = to Q(t) - A for

all t in (0, to).
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We proceed to prove the convergence of {n'l(xn(t) - xn(O)) - g(t)n.

let v Lz 1 (~~,v), gud let L(u) = [vn]'/2 + g{t)ai. Then

-1 = -
P{(n & (t) - X (0))- g(t))/n > v} P{Sn,L(n)s t} P{Sn,L(n)s Af(g(t),1)}.
Further, we note that L{(n) satisfy Condition (3.1) with z = g(t) in (0,1). T.us
to prove the result of the theorem it is enough by Lemma 4,1 to show that

4.4) Lim E¢{B(L(n),Af(g(t),1)} = P{Q(t)-a>V},

n-roo

Finally, we prove Statement (4.4). Let V be a standard normal rv indepen-

dent of Zl’ ZZ’
PV (5 (), 1 (L(n) , 1))

.es, and of Ul’ U2’ e.» « Then E¢{B(L(n),Af(g(t),1)}} =
“1/2(1(n),2)}. To prove Statement (4,4) it is

enough to show by Lemma 3,3 that

(4.5) tin Pveet 2 (g(r),2) < (£(g(t),1) - J(L(n),1))VR}

n-ree
= P{Q(t) - A>V}-
By Lemma 3.4 and by the independence of V and Wn(p) for all n in {1, 2, ,..}
and for all p in [0,1] we obtain that Vdfllz(g(t),ZJ + (J(L(n),1)-£(g(t),1))vn
converges in distribution as n + « to the rv -1
1/2 D S | -a -8 m “g(t)
VeE/ “(g(t),2) - m ToW(m Tg(t)) (L - g(t)) (A + () 40 [ W(p)h(p)dp -
o
-~ BAI(A>0)f(g(t),1) + m'lv. Consequently the result of the theorem follows by

the linearity property of multivariate normal distributions. ||

]
i
<
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